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motivated by the spacetime conformal field theory dual to the near-horizon geometry of

Q1 D1-brane bound to Q5 D5-brane wrapped on T
4 × S

1, where N = Q1Q5. The sigma

model admits nontrivial instanton for all N ≥ 2, which serves as a local probe of emergent

holographic spacetime. We define emergent geometry of the spacetime as that of instanton

moduli space via Hitchin’s information metric. At zero temperature, we find that emergent

geometry is AdS3. At finite temperature, time-periodic instanton is mappable to zero tem-

perature instanton via conformal transformation. Utilizing the transformation, we show

that emergent geometry is precisely that of the non-extremal, non-rotating BTZ black hole.
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1. Introduction

In recent work [1], exploiting instantons in four-dimensional N = 4 super Yang-Mills theory,

we were able to extract an emergent holographic dual geometry even at weak coupling

g2
YM ¿ 1 and small rank N ∼ O(1). Specifically, we examined moduli space geometry

of the Yang-Mills instantons at finite temperature and found that Hitchin’s information

metric [2]1

Ginfo
AB (Z) ≡

∫

R4

〈
LYM(∂A logLYM)(∂B logLYM)

〉
, (1.1)

of the Yang-Mills instanton density LYM exhibits features identifiable as a Schwarzschild-

like black hole whose geometry asymptotes to five-dimensional anti-de sitter space at in-

finity. Given that this is the regime outside Maldacena’s AdS/CFT correspondence [4],

where string worldsheet and quantum effects are violent, the finding in [1] is quite striking

and deserves further investigation.

In this work, we continue pursuing the idea of [1] but in a lower dimensional con-

text. Specifically, we consider a class of (4, 4) superconformal field theory, described by

two-dimensional nonlinear hyperKähler sigma model whose target space is T ∗
CP

N−1, the

cotangent bundle of CP
N−1. For N → ∞, the sigma model is known to emerge in the

infrared limit as holographic dual to the near-horizon geometry of D1-D5 system wrapped

on T
4×S

1 with N = Q1Q5, where Q1, Q5 are the numbers of D1- and D5-branes. This was

first suggested in [4] and further studied in [5]–[9].2 A natural question then arises: as for

the four-dimensional N = 4 super Yang-Mills theory, is there a holographic dual geometry

emergent out of such sigma model at weak coupling and at small N?

1For reviews and further discussions on information geometry of instantons, see [3].
2For a recent review on the subject, see [10].
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In this work, we shall study geometry of moduli space of holomorphic instantons for

the nonlinear sigma model on T ∗
CP

N−1 by exploiting Hitchin’s information metric (1.1).

We shall find that the geometry is precisely that of the three-dimensional anti-de Sitter

space at zero temperature and, at finite temperature, of the non-extremal, non-rotating

BTZ black hole! Given that this is the regime where string worldsheet and quantum

loop corrections are expected to be large, the result suggests a certain rigidity property of

the three-dimensional anti-de Sitter space and the BTZ black hole when they emerge as

holographic geometries.

This paper is organized as follows. In section 2, we recall relevant aspects of nonlinear

hyperKähler sigma model on target space T ∗
CP

N−1 from the holographic dual of near-

horizon geometry of the D1-D5 system. In section 3, we focus on period maps to the two

cycles in the base manifold CP
N−1, and propose to study holomorphic instantons of (2,2)

supersymmetric nonlinear sigma model on CP
N−1. In section 4, we study geometry of the

instanton moduli space at zero temperature. We show that Hitchin’s information metric

is precisely that of the AdS3. In section 5, we study sigma model calorons, viz. periodic

instantons at finite temperature with trivial holonomy. The calorons are straightforwardly

constructible from the zero-temperature instantons via appropriate conformal mapping.

Utilizing the map, we show that Hitchin’s information metric is precisely that of non-

extremal, non-rotating BTZ black hole. In section 6, we discuss a potentially subtle issue

in identifying topology of the ’worldsheet’ of the D1-D5 effective string, which is specific

to AdS3 and BTZ black hole.

2. Target space conformal field theory

In this section, we shall recapitulate the microscopic theory of D1-D5 system wrapped on

T
4 [5]-[9]. Here, the D1-branes are ”instanton” strings inside the D5-branes. It is well

known that the moduli space of Q1 instantons in U(Q5) gauge theory on T
4 is the resolved

SymQ1Q5
(T̃4). In the small instanton size limit, this description reduces to the gauge theory

corresponding to the system of Q1 D1-branes and Q5 D5-branes. Here, the D1-branes are

wrapped on S
1 and the D5-branes are wrapped on T

4 × S
1. The relevant limit is when

Vol(T4) ∼ α′2, while Vol(S1) À
√

α′.

The low-energy dynamics of the above D1-D5 brane complex is described by two-

dimensional (4,4) quiver gauge theory of gauge group U(Q1) × U(Q5). By construction,

the theory lives on S
1. The gauge theory can also have non-zero θ angle corresponding

to the relative U(1) gauge group. The field contents arising from massless excitations

are as follows. From (1,1) string, there are one 4d N = 2 vector multiplet (Aa, Yi) and

one hypermultiplet Ym, all in adjoint representation of U(Q1). From (5,5) string, there

are again one 4d vector multiplet (Ba,Xi) and one hypermultiplet Xm, all in adjoint

representation of U(Q5). From (1,5) and (5,1) strings, there arise a hypermultiplet χ =

(χ1, χ2)
T transforming as a doublet of diagonal SU(2)R subgroup of internal SO(4)I '

SU(2)×SU(2) and as a bi-fundamental representation of U(Q1)×U(Q5). Thus, under the

relative U(1) gauge group, (χ1, χ2) carry charges (+1,−1).

– 2 –
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The supersymmetric ground state is determined by two sets of D-flatness conditions

for the adjoints of U(Q1) and U(Q5), respectively. We also turn on SU(2)R triplet Fayet-

Iliopoulos terms ζ ≡ (ζ, ζc) along the U(1) gauge subgroups. Decompose the D-flatness

conditions irreducibly into traceless and trace parts. The traceless parts combined with

the SU(Q1) × SU(Q5) gauge invariance fixes the two adjoint hypermultiplets Xm and Ym

completely. The trace parts then put constraints solely on bi-fundamental hypermultiplets

χ, now deformed by the Fayet-Iliopoulos parameters:

χ1 ⊗ χ∗
1 − χT

2 ⊗ χT∗
2 = ζ

χ1 ⊗ χT
2 = ζc . (2.1)

It is now known [11, 12] that the equations (2.1) define the moduli space T ∗
CP

Q1Q5−1,

the cotangent bundle of the hyper-Kahler manifold CP
Q1Q5−1. More specifically, in (2.1),

the first equation for χ1 describes the base CP
Q1Q5−1 manifold, while the second equation

for χ2 defines the cotangent space as the fiber. The Fayet-Ilopoulos parameter ζ is identi-

fiable with the moduli of the hyper-Kahler metric on T ∗
CP

Q1Q5−1. The simplest situation

is when Q1Q5 = 2, yielding the Eguchi-Hanson space. In the limit ζ is tuned to zero, it

approaches the orbifold C
2/Z2. Likewise, for N ≡ Q1Q5 > 2, the moduli space approaches

the symmetric product orbifold:

T ∗
CP

N −→ SymN (C2) =
(C2)N

SN
. (2.2)

The singularity that appears in this limit corresponds to the cycle of length N of the

permutation group SN . It is associated with the chiral primary operator with dimension

h = h̃ = (N − 1)/2. We shall be primarily interested in the moduli subspace associated

with the resolution of this cycle. Other singularities in the moduli space corresponding

to other cycles are orthogonal to the above one, and hence are inherent to the symmetric

product orbifold itself.

Thus, the Higgs branch of the quiver gauge theory corresponds to U(1) gauged linear

sigma model on the hyperKähler moduli space T ∗
CP

Q1Q5−1. This theory is expected to

flow in the infrared to (4, 4) supersymmetric CFT2 with central charge c = c̃ = 6Q1Q5. In

particular, integrating out the U(1) vector multiplet that interacts strongly in the infrared,

the theory is reduced to nonlinear sigma model on T ∗
CP

Q1Q5−1 [13].

3. Holomorphic instantons in CFT2

As discussed in the previous section, Fayet-Iliopoulos deformation resolves the singularity

on the Higgs branch and blows it up to a cycle of length N. In this case, the second homology

group of the cotangent bundle T ∗
CP

N−1 is of rank one, generated by a 2-cycle inside the

base CP
N−1. Since the CFT2 at the infrared, the nonlinear sigma model on T ∗

CP
N−1, lives

on S
1 on which both D1- and D5-branes were wrapped, there now exists instantons that

maps Σ0 = S
1 × Rt ' C to the base CP

N−1 at zero temperature or Σβ = S
1 × S

1
β ' T2 to

CP
N−1 at finite temperature T = 2π/β. They are worldsheet instantons of the effective D1-

D5 strings,3 equivalently, holomorphic instantons inside the instanton strings. For example,

3Instantons of this sort were considered from the viewpoint of 6d supergravity in [14].
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for the smallest value of N − 1, viz. Q1Q5 = 2, the target manifold is the Eguchi-Hanson

space. The instanton is the well known harmonic map to the two sphere blown up from

C
2/Z2.

We are primarily interested in understanding geometry of the moduli space of these

instantons, framed inside the moduli (sub)space of the Higgs branch. To this end, we shall

describe the holomorphic worldsheet instantons effectively as instantons in two-dimensional

CP
N−1 model. Evidently, such truncation keeps only the (2,2) supersymmetry manifest,

but this does not affect the conclusions we shall be drawing. For CP
N−1, dim H1,1(R) = 1

and the Kähler class is specified by a single parameter. Correspondingly, the sigma model

is specified by a choice of the Kähler potential K(Zα, Z∗
α), where Zα, Z∗

α are complex chiral

superfields (which just renames χ1’s). In the Kähler potential, part that is globally defined

on CP
N−1 belongs to the D-term, and part whose Kähler form J = d ∧ dK shifts complex

cohomology classes belongs to the F-term. To construct instanton solutions, we shall excite

bosonic part of the CP
N−1 model, which consists of N complex scalar fields Zα subject to

the constraint |Zα| = 1. It is given by

S =
N

λ2

∫

Σ

[
|∂mZα|2 +

1

4
(Z∗

α∂mZα − Zα∂mZ∗
α)2

]
. (3.1)

Here, λ is a dimensionless coupling constant. This is is a unique action involving two deriva-

tives and retaining a local U(1) invariance Zα(x) → eiε(x)Zα(x). Alternatively, the model

can be defined without the constraint |Z| = 1 but with manifest U(1) gauge invariance

by introducing a Lagrange multiplier µ2 and an abelian gauge potential Am, respectively.

This amounts to defining the CP
N−1 sigma model in terms of gauged (2, 2) linear sigma

model, which constructs CP
N−1 as a quotient of C

N . In this formulation, bosonic part of

the action reads

S =
N

λ2

∫

Σ

[
|DmZα|2 − µ2(|Zα|2 − 1)

]
, (3.2)

where DmZα ≡ (∂m + iAm)Zα. The equations of motion are

(D2
m + µ2)Zα = 0, |Zα|2 = 1, (Z∗

αDmZα − ZαDmZ∗
α) = 0. (3.3)

Solving the latter two equations, we find

Am =
i

2
(Z∗

α∂mZα − Zα∂mZ∗
α). (3.4)

The BPS equation is derivable by rewriting the action under the condition |Zα|2 = 1 as

S =
N

λ2

∫

Σ

[
|(Dm ∓ iεmnDn)Zα|2 + 2π F

]
≥ 2πN

λ2
Q , (3.5)

where F is the instanton charge density and

Q ≡
∫

Σ
F = − i

2π

∫

Σ
εmn(DmZα)∗(DnZα) =

1

4π

∫

Σ
εmnFmn ∈ Z (3.6)

– 4 –
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is the instanton charge. It is integrally quantized U(1) gauge flux. From (3.5), the BPS

equation follows in the form:

DmZα = ±iεmnDnZα . (3.7)

Thus, in complex coordinates, components of an instanton configuration are holomorphic

sections of a line bundle over Σ. It also follows from (3.7) that the Lagrange multiplier is

set by the instanton charge density

µ2 = −1

2
εmnFmn. (3.8)

The BPS instantons that solve (3.7) are well known [15] - [17]. It is well known that

the dimension of the moduli space for charge k instantons in CP
N−1 is given by

dimCMN
k = kN = k Q1Q5 . (3.9)

We shall now construct holomorphic instantons explicitly in a suitable parametrization

suited for our purpose, both at zero and finite temperature. We shall then study geometry

of the instanton moduli space by computing Hitchin’s information metric.

4. Emergent AdS3 geometry at zero temperature

Consider first the holomorphic instantons at zero temperature. The ’worldsheet’ of the

effective D1-D5 string is Σ0 = S
1 × Rt, which is conformally equivalent to C. Introduce

complex coordinates on the worldsheet z ≡ (x1 + ix2), z ≡ (x1 − ix2). The most general

holomorphic instanton solution of (3.7) topological charge 1 is given by

Zα =
wα

|w| , where wα = (z − zo)uα + ρα, u∗
αρα = 0, |u|2 = 1. (4.1)

Here, moduli parameters of the holomorphic instanton are zo = x1
o + ix2

o, zo = x1
o − ix2

o for

the center, ρ =
√

|ρ|2 for the size, and ρα/ρ for the SU(N) orientation, respectively. The

uα parametrizes the SU(N) vacuum. With appropriate SU(N) rotation, we can choose

uα = δα,1 and ρα = ρ δα,2 (4.2)

while satisfying the conditions in (4.1). Thus, there are one complex modulus parameter z0

and one reail modulus parameter ρ, specifying center and size of the instanton, respectively.

They range over z0 ∈ C and ρ ∈ R
+. We are primarily interested in the three-dimensional

subspace in the moduli space MN
k in (3.9) — this is the subspace orthogonal to the SU(N)

orientation.

The Lagrangian density of the holomorphic instanton reads

F(z; zo) =
1

4π
εmnFmn(z; zo). (4.3)

Substituting the instanton solution (4.1), we find that

F(z, zo) =
1

π

|ρ|2
(|z − zo|2 + |ρ|2)2 . (4.4)

– 5 –
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Motivated by Hitchin’s proposal [2], we propose holographic geometry in terms of quantum-

averaged information metric of the instanton moduli space as

Ginfo
AB (zo) =

∫

Σ
dzdz

〈
F(∂A logF)(∂B logF)

〉
. (4.5)

Here, the bracket refers to normalized path integral over the fields (Zα, Z∗
α). Semiclassically,

saddle-point configuration dominates (4.5). By elementary computations, as was done

in [18], the information geometry spans three-dimensional subspace of ρ and zo. On this

space, the information metric (4.5) is given by

(ds)2instanton =
R2

ρ2

[
dρ2 + dzodzo

]
, (4.6)

where R2 = 4/3. Had we considered an instanton of topological charge k instead, the

metric remains the same as (4.6), except that R2 → R2k2.

We see that, as probed by the holomorphic instanton, the three-dimensional Euclidean

anti-de Sitter space emerges as a holographic geometry of two-dimensional (2,2) supersym-

metric sigma model over CP
N−1, which spans relevant part of the (4,4) hypermultiplet

nonlinear sigma model over the hyperKähler moduli space T ∗
CP

N−1. We also see that

the emergent AdS geometry (4.6) does not depend on the rank N = Q1Q5 and the sigma

model coupling λ, the feature shared by the information geometry of instantons in four-

dimensional N = 4 superconformal Yang-Mills theory.

5. Emergent BTZ black hole geometry at finite temperature

Consider next the holomorphic instanton at finite temperature T = 2π/β. They are sigma

model calorons. Adopting the reasoning of [19], we expect that calorons with trivial holon-

omy would dominate the thermal partition function at semiclassical level. In Matsubara

formulation, the ‘worldsheet’ of the effective D1-D5 string is Σβ = S
1 × S

1
β. For reasons we

shall return later, we will open up S
1 to R

1 of the ‘worldsheet’ and consider Σβ = R × S
1
β.

The ‘worldsheet’ coordinates y = y1 + iy2 covers Σβ with y2 ' y2 + β identified with com-

pact coordinate on S
1
β. With this choice, the most general unit charge caloron of trivial

holonomy is given by [20, 21]

Zα =
wα

|w| , where wα = uα e
2π
β

(y−yo) + vα, |u|2 = |v|2 = 1, arg(u∗
αvα) = 0 .

(5.1)

As before, uα parametrizes SU(N) vacuum. Now, in contrast to the instanton at zero

temperature, vα is not directly interpretable as the size parameter ρ. This is because uα

and vα are no longer SU(N) orthogonal — the condition arg(u∗
αvα) = 0 still leaves Re(u∗

αvα)

arbitrary — and because rescaling of vα is equivalent to shifting y0. By appropriate SU(N)

rotation, we choose to parametrize the moduli as

uα = δα,1 and v1 =
√

1 − a2, |v2| = a, v3 = · · · vN = 0 (0 ≤ a ≤ 1) . (5.2)

This choice is compatible with the conditions on caloron’s moduli parameters given in (5.1).

– 6 –
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In fact, the caloron with trivial holonomy can be related to the instanton at zero

temperature. This is most conveniently seen by making the conformal transformation

exp
(2π

β
y
)

=
2π

β
z. (5.3)

With suitable overall rescaling which leaves Zα intact, we can now rewrite the caloron (5.1)

in the form of the zero temperature instanton (4.1):

wα = (z − zo)uα + ρα (5.4)

by judiciously arranging the moduli parameters so that they satisfy the constraints (4.1).

However, this does not mean that the caloron is the same as the instanton at zero temper-

ature. Rather, it means that the caloron moduli parameters (y0, a) are reinterpretable in

terms of the zero temperature instanton moduli parameters:

ρα =
β

2π
e

2π
β

yo[vα − (u∗ · v)uα], ρ = a
β

2π

∣∣∣e
2π
β

y0

∣∣∣ , zo = − β

2π

√
1 − a2e

2π
β

y0 . (5.5)

It indicate that the calorons, once conformally mapped, constitute a proper subset of all

possible instantons at zero temperature.

Now, the complex coordinate z covers the entire complex plane because of the peri-

odicity of Euclidean time, y2 ' y2 + β. Thus, we can utilize the previous computation of

holographic geometry for the zero temperature instanton to extract information metric of

the caloron. In other words, interpreted in terms of the instanton moduli (ρ, zo), Hitchin’s

information metric for the caloron is the AdS3 space in the Poincaré coordinates. But then,

the information metric of the caloron expressed in terms of the caloron moduli (a, yo) is

obtainable by substituting the relations (5.5). This yields

(ds)2caloron =
R2

ρ2

[
dρ2 + dzodzo

]

= R2
[ da2

a2(1 − a2)
+

(2π

β

)2(dy2
1

a2
+

( 1

a2
− 1

)
dy2

2

)]
, (5.6)

where yo → y1 + iy2, yo → y1 − iy2. Redefining the coordinates as a = 1/r, we find that

(ds)2caloron = R2
[ dr2

r2 − 1
+

(
2π

β

)2 (
r2dy2

1 + (r2 − 1)dy2
2

)]
. (5.7)

Here, because a ∈ (0, 1], the ‘radial’ variable r ranges only over r ∈ [1,∞). We then

recognize that the moduli space metric (5.7) is precisely the metric of the non-extremal,

non-rotating BTZ black hole, whose horizon is located at r+ = 1.

Notice that the emergent geometry does not depend on the rank N = Q1Q5 of the

hypermultiplet sigma model and the coupling λ at all. This is in contrast to the situation of

four-dimensional N = 4 superconformal Yang-Mills theory, where the emergent geometry

at finite temperature certainly deviated from the AdS5 Schwarzschild black hole. It suggests

that there exists certain rigidity or nonrenormalization property against string worldsheet

and quantum loop corrections.

– 7 –
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6. Topology

There remains an issue concerning global aspect of the holographic geometry, . In con-

structing instanton and caloron of the hypermultiplet sigma model as holomorphic world-

sheet instantons of the D1-D5 effective string, we have tacitly taken the ‘worldsheet’ to

have topology of Σ0 ' C and Σβ ' R × S
1
β. Thus, the instanton at zero temperature

is a localized lump and the caloron at finite temperature is a periodic array around the

Euclidean time direction.

On the other hand, by construction, the D1-D5 effective string theory is defined on S
1,

not on R. That would mean that we should have constructed instantons at zero temperature

as a periodic array around S
1 and calorons at finite temperature as a doubly period array

around S
1×S

1
β. Stated differently, calorons with single or double periodicity are the relevant

configurations in so far as the boundary condition of hypermultiplets on the ‘worldsheet’

is concerned. If this were the correct identification of the worldsheet topology, a technical

issue pertains since, according to the theorem of [22], there is no k = 1 instantons on T2 for

any value of N , a feature shared with Yang-Mills theories on T
4 [23]. On the other hand,

the instanton exists on S
1 × Rt. Change of the worldsheet topology arose from turning on

finite temperature. Since this should be a smooth process, we think the k = 1 instanton

ought to exist not only on S
1 × Rt but also on T2.

A possible resolution would be the well-known string theoretic mechanism that the

relative U(1) gauge subgroup is coupled to NS-NS or R-R two-form potential, and they

contribute (generically non-integral) U(1) flux background on the ‘worldsheet’ of the D1-D5

effective string. Combined with the instanton or caloron configuration, the gauge-invariant

net U(1) flux can be arranged to zero, and evade conditions of the aforementioned no-go

theorem. In such a situation, the topology of the ‘worldsheet’ can be taken consistent with

the D1-D5 effective string theory, viz. Σ0 = S
1 × R or Σβ = S

1 × S
1
β, where the size of S

is taken large compared to the string scale. With such topology, the emergent geometries

described by the metrics (4.6), (5.7) indeed describe correctly the global AdS3 and BTZ

black holes.

An alternative is to take the correct ‘worldsheet’ topology as Σ0 = C at zero temper-

ature and as Σβ = R × S
1
β at finite temperature. In this case, we evade the no-go theorem

and have smooth k = 1 instanton interpolation with the temperature. But then, the emer-

gent geometry (5.7) should be interpreted as describing the BTZ black hole in extreme

high temperature limit only.

We intend to report clarification of this point in a separate work.
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